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Abstract: We present a robust algorithm for estimating the posterior probability of differential expression of 
genes from microarray data. Our approach is based on an orthogonal linear regression of the signals obtained 
from the two color channels. Residuals from the regression are modeled as a mixture of a common component 
and a differentially expressed component and an EM-algorithm is used to deconvolve the mixture. The algorithm 
provides estimates of the measurement error variance, the proportion of differentially expressed genes, and 
the probability that each individual gene belongs to the differentially expressed class. We have applied this 
procedure to both real and simulated microarray data. Our simulation results demonstrate that the algorithm can 
estimate the key parameters with high precision over a wide range of models. Application of the method to 
replicated experiments demonstrates that the classifi cation of differentially expressed genes is highly reproducible. 

Part I: Modeling Fluorescent Intensities 

We used data from self comparisons to identify a 
scale transformation of the raw fl uorescent intensities 
for which the relationship between the color channels 
is linear with additive errors that are independent 
of the absolute signal intensity. 

We found that a logarithm transform of intensities offset 
by a color dependent constant provided linearity and 
homogeneous variance for a wide range of data sets. We 
fi t the relationship to fl uorescent intensities y1 and y2 
obtained from the “red” and “green” color channels: 

log(y1 — γ1) = α + β log(y2 — γ2)

where
g1 and g are the offsets and
a and b are the parameters of the regression line.

This empirically derived relationship between the 
fl uorescent signals in self comparisons suggests a 
plausible model for the relationship between signal 
intensity yig and mRNA concentration xig for a 
gene g in sample i for non-self comparisons 

yig  = aixigbi + ci.

The follow panels show
•  Details of the method for fi tting a linear function 

to a scatterplot of (transformed) intensities. 
•  The effects of different scaling functions (identity, 

square root, logarithm and reciprocal) on  
the distribution of residuals. 

•  The effect of the offset parameter on the linearity 
of the log-log scatter plot of signal intensities. We 
believe that the offset is directly related to the 
background signals in the two color channels. 



Selection of the Scaling Function:  Placenta-Placenta Self Comparison on GEM Array

Conclusion: The residuals from a logarithm scaling transformation are approximately normal and have minimal 
correlation with fi tted values. 

The Shifted Logarithm Scaling Function

Conclusion: Shifting the raw measurement improves linearity on the logarithm scale.
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Fitting a Regression Line to the Data

Orthogonal residuals provide a symmetric treatment of the two fl uorescent intensities y1 and y2.
Robust regression reduces the infl uence of differentially expressed genes of the Fitted line.

Part II:  Modeling the Residuals  

In a non-self comparison, the orthogonal residuals, 
r are modeled as a two component mixture. The 
fi rst component, C, represents the class of common 
genes that expressed equally in the two mRNA 
populations.  The second component, D, represents 
differentially expressed genes. 

Pr(r) = (1— π) Pr(r|C) + π Pr(r|D) 

where 
1 — π = proportion of common genes
π = proportion of differentially expressed genes

Residuals from common genes are modeled as a 
Normal distribution with mean 0 and variance s2.  
Residuals from differentially expressed genes are 
modeled as a Uniform distribution. 

Deconvolution of the Residuals 

An EM algorithm is used to obtain estimates of 
the proportion of differentially expressed genes, π, 
and the residual error variance, s2. The E-step of 
the EM algorithm applies Bayes’ rule to obtain the 
conditional probabilities 

 Pr(D|r) =                π Pr(r|D)  
               π Pr(r|D) + (1— π) Pr(r|C)

Thus we can obtain estimates of the posterior probability 
of differential expression based on information in 
the regression residuals. 

Examples of Differentially Expressed Genes
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Consistency of Results

Replication across arrays:  
Placenta vs Liver From GEM2 

Conclusions

•  Raw ratios are not reliable measures of differential expression 

•  The two color channels in self comparisons are related by a linear model on the logarithm 
scale with an additive offset 

•  Robust orthogonal regression can be used to fi t a linear model to data from non-self comparisons

•  Residuals from the orthogonal regression can be separated into common and differentially expressed 
components using an EM algorithm 

•  Classifi cation of differentially expressed genes is consistent on both within array and across array replications
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